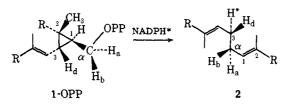
strong, albeit destabilizing, orbital mixing involving the isotopic bond and the π cloud may be important.

Acknowledgment. We wish to thank Professors F. W. Dahlquist, C. E. Klopfenstein, T. Koenig, and J. E. Baldwin for valuable suggestions and stimulating discussion.

(16) National Institutes of Health Postdoctoral Fellow, 1971-1972.

(17) We thank the National Science Foundation for partial support of this investigation.


S. A. Sherrod,¹⁶ V. Boekelheide*¹⁷

Department of Chemistry, University of Oregon Eugene, Oregon 97403 Received March 27, 1972

Model Studies of Terpene Biosynthesis. Stereoselective Ionization of N-Methyl-4-[$(\alpha S, 1R, 3R)$ chrysanthemyloxy]pyridinium-d1 Iodide1

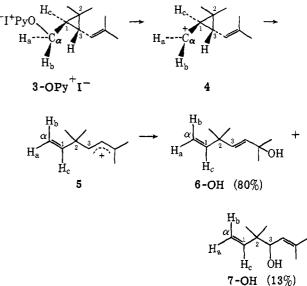
Sir:

The stereospecific head-to-head condensation of two molecules of farnesyl pyrophosphate during the biosynthesis of squalene (2) is known to proceed through a

C₃₀ cyclopropylcarbinyl intermediate, presqualene pyrophosphate (1-OPP, R = homogenaryl).^{2,3} We have proposed a mechanism in which the stereochemistry of all but the last step leading from 1-OPP to 2 can be attributed to the solvolytic properties of cyclopropylcarbinyl cations with minimal special orientation by an enzyme.2a Recently, Trost and coworkers demonstrated that the skeletal rearrangements required for biosynthesis of squalene from presqualene pyrophosphate were possible under normal solvolysis conditions in a C_{10} model system.⁴ If the configuration of C_{α} is to be inverted during a solvolytic rearrangement in a manner analogous to that found for squalene, C_{α} must assume a specific orientation with respect to the cyclopropane ring during heterolysis of the C_{α} -O bond. Based on work with alkyl-substituted cyclopropylcarbinyl derivatives,⁵ we suggested that a conformation in which the leaving group was trans to the C_1 - C_3 cy-

(1) We wish to acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation, and the University of Utah Research Fund for support of this work.

(2) (a) H. C. Rilling, C. D. Poulter, W. W. Epstein, and B. Larsen, J. Amer. Chem. Soc., 93, 1783 (1971); (b) L. J. Altman, R. C. Kowerski, and H. C. Rilling, *ibid.*, 93, 1782 (1971); (c) R. M. Coates and W. H. Robinson, *ibid.*, 93, 1785 (1971); (d) W. W. Epstein and H. C. Rilling, J. Biol. Chem., 245, 4597 (1970); (e) J. Edmond G. Popják, S.-M. Wong, and V. P. Williams, *ibid.*, 246, 6254 (1971); (f) R. V. M. Campbell, L. Crombie, and G. Pattenden, *Chem. Commun.*, 218 (1971).


(3) A structurally analogous C_{40} pyrophosphate is an intermediate in (d) A structurally analogous Car pyrophosphate is an internetiate in phytoene biosynthesis: L. J. Altman, L. Ash, R. C. Kowerski, W. W. Epstein, B. R. Larsen, H. C. Rilling, F. Muscio, and D. E. Gregonis, J. Amer. Chem. Soc., 94, 3257 (1972).
(d) B. M. Trost, P. Conway, and J. Stanton, Chem. Commun., 1639

(1971).

(5) (a) C. D. Poulter, E. C. Friedrich, and S. Winstein, J. Amer. Chem. Soc., 92, 4274 (1970); (b) C. D. Poulter and S. Winstein, *ibid.*, 92, 4282 (1970). clopropane bond would facilitate ionization by utilizing the vinyl substituent at C_3 for delocalization of charge. Subsequent inversion of C_{α} is consistent with stereochemical studies of cyclopropylcarbinyl rearrangements.⁶ However, in a recent paper Kispert and coworkers7 reported, on the basis of semiempirical calculations (INDO approximation), that interaction between positively charged C_{α} and the vinyl substituent at C_3 through the cyclopropane ring is expected to be very small or nonexistent.

N-Methyl-4-[chrysanthemyloxy]pyridinium iodide (3-OPy+I⁻) should provide a suitable C_{10} model system with which to determine the preferred stereochemistry at C_{α} during ionization of presqualene pyrophosphate.⁸ Hydrolysis of 3-OPy+I⁻ is known to give a mixture of alcohols with two major components, yomogi alcohol (6-OH), 80%, and artemisia alcohol (7-OH), 13%, in which only the C_1 - C_3 cyclopropane bond has been ruptured (Scheme I).9 Although two cationic inter-

Scheme I. Hydrolysis of N-Methyl-4-[chrysanthemyloxy]pyridinium Iodide

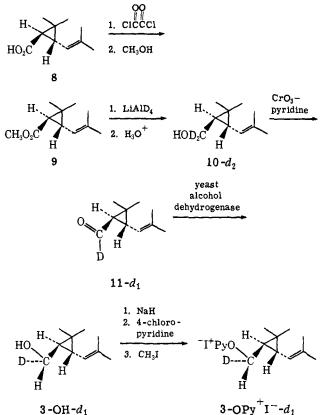
mediates are thought to precede formation of alcohols 6-OH and 7-OH,10 the stereochemistry of C_{α} during ionization of 3-OPy+I- should determine the relative positions of H_a , H_b , and H_c in the allylic alcohols. Rotation about the C_{α} -C₁ bond cannot occur during the solvolytic lifetime of 4, 5, 11 and the rearrangement $4 \rightarrow 5$ does not alter the relative positions of protons at C_{α} and C₁. Therefore, the preferred orientation for C-O bond heterolysis can be deduced by replacing H_a with deuterium and examining the proton distribution at C_{α} in hydrolysis products 6-OH and 7-OH.

(6) (a) K. B. Wiberg and G. Szeimies, *ibid.*, **92**, 571 (1970); (b) J. E. Baldwin and W. D. Fogelsong, *ibid.*, **90**, 4303 (1968); (c) Z. Majerski and P. von R. Schleyer, *ibid.*, **93**, 665 (1971); (d) G. A. Olah, C. L. Jeuell, D. P. Kelly, and R. D. Porter, *ibid.*, **94**, 146 (1972).

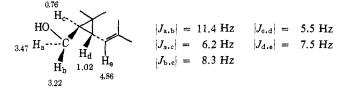
(7) L. D. Kispert, C. Engelman, C. Dyas, and C. U. Pittman, Jr., ibid., 93, 6948 (1971).

(8) Replacing the homogeranyl substituents by methyl groups should not alter the reactivity of the cyclopropylcarbinyl core of 1-OPP. (9) C. D. Poulter, S. G. Moesinger, and W. W. Epstein, *Tetrahedron*

Lett., 67 (1972).


(10) C. D. Poulter and S. G. Moesinger, Abstracts, 161st National Meeting of the American Chemical Society, Los Angeles, Calif., March 1971, ORGN 43.

 (11) (a) D. S. Kabakoff and E. Namanworth, J. Amer. Chem. Soc.,
 92, 3234 (1970); (b) B. R. Ree and J. C. Martin, *ibid.*, 92, 1660 (1970); (c) V. Buss, R. Gleiter, and P. von R. Schleyer, ibid., 93, 3927 (1971).


(1R,3R)-Chrysanthemic acid $(97\% \text{ optically pure})^{12}$ was converted to (1R,3R)-chrysanthemol- d_2 (10) by the sequence of reactions outlined in Scheme II. Chro-

Scheme II. Synthesis of

N-Methyl-4-[$(\alpha S, 1R, 3R)$ -chrysanthemyloxy]pyridinium- d_1 Iodide

mium trioxide-pyridine oxidation¹⁴ gave a 95:5 mixture of aldehyde **11** and unoxidized alcohol **10** which was introduced without additional purification¹⁵ into an aqueous suspension of actively fermenting yeast.¹⁶ Glpc analysis of **3**-OH- d_1 using conditions (500-ft Carbowax 20M) which cleanly separated *cis*- and *trans*chrysanthemol gave no evidence (<0.5%) of the undesired cis isomer. From nmr spectra¹⁷ of **3**-OH- d_1 it is obvious that the yeast alcohol dehydrogenase reduction

was stereospecific. Protons H_a and H_b of chrysanthemol are intrinsically nonequivalent^{2e.18} with a chem-

(12) Measured $[\alpha]^{28}D + 13.4$ (c 5.4, C₂H₅OH) and $+24.3^{\circ}$ (c 5.0. CHCl₃) as compared with reported values of $[\alpha]^{28}D + 14.4$ (c 3, C₂H₅OH) and $+25.9^{\circ}$ (c 3, CHCl₃) for optically pure acid.¹³ (13) I. G. M. Campbell and S. H. Harper, J. Sci. Food Agr., 3, 189

(15) 1. G. M. Campbell and S. H. Harper, J. Sci. Food Agr., 5, 189 (1952).

(14) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).

(15) Initial attempts to isolate $11-d_1$ resulted in partial isomerization to its cis isomer.

(16) V. E. Althouse, D. M. Feigl, W. A. Sanderson, and H. S. Mosher, J. Amer. Chem. Soc., 88, 3595 (1966).

(17) Nmr spectra were taken in carbon tetrachloride on a Varian A-60 spectrometer or a Varian XL-100-12 spectrometer. Chemical shifts are reported in δ , parts per million, relative to internal tetramethyl-silane.

(18) J.-L. Pierre, R. Perraud, and P. Arnaud, Bull. Soc. Chim. Fr., 1539 (1970).

Journal of the American Chemical Society | 94:15 | July 26, 1972

ical-shift separation of 0.25 ppm in carbon tetrachloride. By replacing H_a with deuterium the eight-line pattern for H_a and H_b is reduced to a doublet of triplets at $3.22 \text{ ppm} (J_{b,c} = 8.3 \text{ Hz}, J_{a,b} = 1.6 \text{ Hz}^{19})$ which is further simplified to a doublet by irradiation at the deuterium resonance position. At high spectrum amplitudes with deuterium decoupling, a weak doublet at 3.47 ppm $(J_{a,c} = 6.2 \text{ Hz})$ was also observed. Yeast alcohol dehydrogenase is known to stereospecifically reduce deuterioaldehydes to the corresponding S primary alcohols.¹⁶ Since chrysanthemic acid (8) used to prepare 3-OH- d_1 was a 97:3 mixture of 1R,3R and 1S,3S enantiomers, the weak doublet at the H_a resonance position was expected. A comparison of intensities for H_a and H_b indicated 4.8% of the αS , 1S, 3S diastereomer, in good agreement with the optical purity of 8. Preparation of 3-OPy+I⁻- d_1 from 3-OH- d_1 does not alter the configuration of C_{α} .²⁰

Hydrolysis of N-methyl-4-[$(\alpha S, 1R, 3R)$ -chrysanthemyloxy]pyridinium iodide and isolation of 6-OH and 7-OH were carried out as previously described⁹ using conditions where the initially formed allylic alcohols are stable. A deuterium-decoupled ¹H spectrum of yomogi alcohol gave two AB quartets of unequal intensity (85 and 15%) for protons at positions H_a , H_b , and H_c (Scheme I). The larger AB quartet results from protons at 4.89 and 5.74 ppm coupled by 17.4 Hz, and the smaller quartet results from protons at 4.84 and 5.74 ppm coupled by 10.6 Hz. From the relative magnitudes of J_{AB}^{21} we conclude that the major quartet corresponds to a structure with protons at positions H_b and H_c and deuterium at H_a, while the minor quartet represents a structure with protons at H_a and H_c and deuterium at H_b. The ¹H nmr spectrum of artemisia alcohol also gave two unequal AB quartets (87 and 13%). The larger quartet (δ 4.97 and 5.87 ppm) had $J_{AB} = 17.6$ Hz and the smaller (δ 4.96 and 5.87 ppm) had $J_{AB} = 10.6$ Hz. Again the proton attached to C_{α} was found predominantly in the H_b position.

It is clear from the nmr spectra of 6-OH- d_1 and 7-OH- d_1 that 3-OPy+I⁻- d_1 ionizes stereoselectively from the conformation shown in Scheme I. After correction for 5% of the $\alpha S, IS, 3S$ diastereomer, the stereoselectivity of 3-OPy+I⁻- d_1 during hydrolysis is 91 \pm 2%, congruent with a rate factor of 9 in favor of the predicted stereochemistry of ionization. I prefer to ascribe the stereoselectivity to electronic control by the vinyl substituent at C₃ since steric interactions between the leaving group and the endo methyl group at C₂ would be expected to give the opposite result. By analogy one should expect parallel behavior of presqualene pyrophosphate.

C. Dale Poulter Department of Chemistry, University of Utah Salt Lake City, Utah 84112 Received April 10, 1972

⁽¹⁹⁾ The observed ${}^{1}\text{H}-{}^{2}\text{H}$ value of 1.6 Hz is in reasonable agreement with a calculated coupling of 1.75 Hz, based on the ${}^{1}\text{H}-{}^{1}\text{H}$ value J = 11.4 Hz and the gyromagnetic ratios of ${}^{1}\text{H}$ and ${}^{2}\text{H}$. (20) (a) M. Vogel and J. D. Roberts, J. Amer. Chem. Soc., 88, 2262

 ^{(20) (}a) M. Vogel and J. D. Roberts, J. Amer. Chem. Soc., 88, 2262
 (1966); (b) G. H. Schmid and A. Brown, Tetrahedron Lett., 4695
 (1968).

⁽²¹⁾ L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, Elmsford, N. Y., 1969, p 301.